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Abstract

In this thesis, I discuss a set of observations of the pulsar B1737+13 and develop a two

scattering screen model to explain the observed variability in the pulsar’s scintillation be-

havior. I begin by introducing the phenomenon of pulsar scintillation and the underlying

physical framework behind one-dimension scattering screen models and scintillation arcs. I

then discuss the methods used to analyze the observations as well as the methods of simu-

lating two-screen scattering to compare to the observations. I then present the results of the

analysis and simulations. To do this, I develop the idea of interaction arcs to characterize

scattering in the two-screen model. I find that the two-screen model and interaction arcs are

able to explain key features in the observed variability in the pulsar’s scintillation behavior.

The explanatory power of this two-screen model provides strong evidence for the existence

of two scattering screens along the line of sight to B1737+13.
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Chapter 1

Introduction

1.1 Motivation

This thesis is motivated primarily by the desire to understand the physics of radio wave

scattering in the ionized interstellar medium. We concern ourselves with an observation of

pulsar B1737+13 made by the Arecibo telescope in 2008, attempting to understand the scin-

tillation behavior of the pulsar in this data set to gain insights into the scattering mechanisms

underlying this behavior.

The study of pulsar scintillation has applications for a number of fields in astrophysics.

Pulsar scintillation can be used to probe the structure of the interstellar medium, which helps

us understand the structure and history of our galaxy. It can also be used to develop timing

models for pulsars, which are used for pulsar timing arrays to detect gravitational waves. It

also has broad applications in plasma physics, optics, and radio astronomy.

This thesis owes a great intellectual debt of gratitude to the work of Sprenger et al. (2022),

who performed a similar study of pulsar scintillation for the pulsar B1508+55. Their work

was the inspiration for this thesis and provided a roadmap for how to approach pulsar scintil-

lation for this data set. It also provided an excellent resource for understanding the physics

of two-screen scattering, which is the model we use to explain the scintillation behavior of
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B1737+13.

1.2 Radio Wave Propagation in the Interstellar Medium

1The interstellar medium (ISM) is the matter that exists between the stars in our galaxy.

It is composed of primarily of hydrogen and helium, with a small amount of heavier elements,

and is found at differing densities and temperatures depending on the type of region it is in.

We are primarily interested in the ionized component of the ISM, in particular the so-called

warm ISM with a temperature T ∼ 104 K. In the plane of the Milky Way, the number density

of hydrogen atoms is approximately 1 cm−3. Of these, about 1 atom out of 30 is ionized,

leading to an electron density ne ∼ 0.03 cm−3. Unlike a neutral gas, this plasma has a natural

oscillation frequency, the plasma frequency, given by

νp =

√
ne e2

πme

= (8.97 kHz) n1/2
e , (1.1)

where e is the electron charge (cgs units), me is the electron mass, and ne is expressed in

cm−3.2 This leads to a dispersion relation, ω2 = ω2
p + k2c2, where ωp = 2πνp and k = 2πν/c.

The phase velocity of an e-m wave in the plasma is Vp = ω/k, and a little algebra shows us

that since the group velocity, Vg = dω/dk, we have Vp Vg = c2 for a plasma. Hence, with

Vp = c
√

1 + ν2
p/ν

2, we find that Vg = c (1 + ν2
p/ν

2)−1/2. Since for the radio waves of interest

(ν > 100 MHz) we have ν � νp in the ISM, the group velocity is

Vg ≈ c

(
1−

ν2
p

2ν2

)
. (1.2)

We can see, then, that an impulsive signal, like that from a pulsar, will have higher radio

frequencies arriving at the Earth before lower frequencies. In particular, if the pulse travels

1This section is adapted from private communication with Dan Stinebring.
2A derivation of this can be found in many places. One particularly instructive one can be found in the

Feynman Lectures, Vol. II, section 7-3, e. g. https://www.feynmanlectures.caltech.edu/II_07.html.

9

https://www.feynmanlectures.caltech.edu/II_07.html


a distance L, the travel time t will be approximately

t =
L

c
+

e2

2πmec

DM

ν2
, (1.3)

where the dispersion measure, DM, is a measure of the column density of free electrons along

the line of sight

DM ≡
∫ L

0

ne ds. (1.4)

An example of a dispersed pulse is shown in Figure 1.1. Since the plasma frequency is

Figure 1.1: An example of a dispersed pulse. Higher frequencies arrive at the Earth before
lower frequencies.

density dependent, we also see that an inhomogeneous plasma, like that of the ISM, will
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yield refractive effects leading to multi-path scattering, a key phenomenon in what follows.

1.3 Pulsars

Pulsars are neutron stars, which are stellar remnants that result from the collapse of

massive stars (10−25M�), leaving behind an incredibly dense core of neutrons supported by

neutron degeneracy pressure. Neutron stars are the densest stellar objects in the universe;

most have a radius of around 10 km and a mass of around 1.4M�, giving them a density of

order 1017 − 1018 kg/m3 (Lyne & Smith, 1990). Pulsars are highly magnetized and rapidly

rotating neutron stars, with periods of rotation ranging from seconds to milliseconds. Pulsars

emit beams of electromagnetic radiation, including radio waves, from their magnetic poles,

which sweep across the sky like a lighthouse as a pulsar rotates (Lorimer & Kramer, 2005).

They were discovered in 1967 by Jocelyn Bell and Anthony Hewish at Jodrell Bank Obser-

vatory (Hewish et al., 1968).

As a probe of the ionized interstellar medium, pulsars have several key properties. First,

being both very small and far away, they are incredibly compact sources of radiation. This

means their radiation is spatially coherent, acting essentially like point sources. Second, the

radiation is pulsed, giving both on- and off-pulse signals that makes it easier to subtract out

background noise (Blandford et al., 1992). All of these properties make pulsars ideal sources

for studying the ISM.

1.4 Scintillation

In observational astronomy, scintillation refers to a range of phenomena that cause the

brightness of a source to vary with time. Generally, these phenomena involve a source’s radi-

ation traveling through some medium—a medium which is not uniform and is characterized

by chaotic fluctuations in density and temperature (Ellison, 1952). This causes light to scat-

ter in a way that changes with time, creating interference that causes the source’s brightness
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to vary.

The most well-known example of scintillation is the twinkling of stars in the night sky.

This occurs due to the starlight scattering as it travels through pockets of air in Earth’s atmo-

sphere with varying densities (Ellison, 1952). Scintillation can also be observed for sources of

terrestrial origin. For example, looking at West Seattle from across Elliot Bay in the Olympic

Sculpture Park one night last summer, I noticed that the lights of the houses appeared to be

flickering. This was also due to atmospheric scintillation. We might note one thing about the

sources just listed: they are all very small compared to how far away they are. Only compact

sources are observed to scintillate, whereas sources with larger angular sizes — like the Moon

and planets — do not. The larger angular sizes of these sources means that any scattering

that happens is averaged over a larger area, making the effect less noticeable (Rickett, 2001).

It is not just visible light sources that scintillate. As is of interest to us, radio wave sources

also scintillate, although the medium that causes this scintillation is not neutral air molecules,

but ionized gas and plasma. Ionospheric scintillation was the first of these phenomena to

be observed in the early 1950s (Rickett, 2001). Interplanetary scintillation due to the solar

wind was first observed for quasars by Margaret Clarke in 1964 and published by Hewish

et al. (1964). The phenomenon that is of most interest to us is interstellar scintillation, which

we observe for pulsars due to scattering in the ionized interstellar medium (Lyne & Smith,

1990). The primary aim of Chapter 2 will be to describe how we observe and characterize

pulsar scintillation to understand the properties of the ISM.

1.5 Observations Analyzed

The data set analyzed in this thesis is a set of observations of pulsar B1737+13 made

by the Arecibo telescope in 2008. Observations of pulsar B1737+13 were made using the

Arecibo telescope in Puerto Rico. The data set consists of 36 epochs of observations over a

period of 38.5 weeks, with the first observation on 5 April 2006 (Modified Julian Day (MJD)
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53830) and the last on 31 December 2006 (MJD 54100). Observations were 1 hour long

and were made in 4 different frequency bands:1175 MHz, 1380 MHz, 1425 MHz, and 1470

MHz. What makes this data set of particular interest is that the pulsar was observed to

undergo a dramatic change in its scintillation behavior over the course of the observations.

The reasons for this change are not well understood, but this thesis will attempt to provide

some insight into possible mechanisms at work. More information about the observations is

given in Section 5.1.

1.6 Thesis Summary

This thesis is organized into seven chapters. Chapter 1 is this introduction, which pro-

vides a brief overview of the motivation for this work, the physics of radio wave propagation

in the ISM, and the properties of pulsars, and the phenomenon of scintillation. Chapter

2 describes the theory of pulsar scintillation, including the observable quantities that we

use to characterize it and how we understand scintillation due to scattering screens. Chap-

ter 3 describes the methods used to analyze the data to find the curvature of scintillation

arcs. Chapter 4 discusses the methods used to simulate two-screen scintillation. Chapter 5

discusses the B1737+13 data set, characterizing the observations in terms of the changing

appearance of the scintillation arcs and measurement of arc curvatures over time. Chapter

6 discusses simulations of the B1737+13 data set, developing the idea of “interaction arcs”

and using this idea to build a two-screen model of the B1737+13 system that shows promise

in explaining the observations. Chapter 7 summarizes the results of this work and discusses

future directions for this research.
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Chapter 2

Pulsar Scintillation: Theory and

Observables

2.1 Observing Pulsar Scintillation

In order to understand how pulsar intensity changes, one must first contend with the

fact that pulsar radiation is intrinsically highly variable over time due to the pulsed nature

of the radiation. The period of a pulsar is usually much shorter than typical scintillation

time scales. As a result, we can probe the longer time scale of scintillation by synchronously

averaging pulses at the Doppler-shifted period for a window of time δt, the subintegration

time, in essence treating the pulsar as a continuous source (Stinebring et al., 2019). As an

important accompaniment to the synchronous averaging of the signal, we also synchronously

average the off-pulse noise in a separate window. This gives us a rapidly alternating on/off

modulation, with resultant interference suppression and immunity to longer-term drifts in

the observing system. Over a total observation time T , our data will be divided into Nt

subintegrations with δt = T/Nt. An FFT-based spectrometer also divides the observing

frequency bandwidth B into Nν frequency channels, each channel with δν = B/Nν . Thus,

a single observation of pulsar scintillation will yield Nt × Nν data points, with each one
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corresponding to the averaged flux density at a particular time and frequency.

It is common to represent these data as an array of pixels indexed along one axis by time

and along the other by frequency, with the brightness or color of each pixel representing

the average flux density at the corresponding time and frequency. This plot is known as

a dynamic spectrum, and it provides the primary way of visualizing the changing pulsar

intensity as a function of time and frequency. An example dynamic spectrum is shown in

Figure 2.1.

Figure 2.1: An example dynamic spectrum from an observation of pulsar B0450-18 (Stine-
bring et al., 2022). Pulsar flux density (“Intensity”) is plotted as a function of radio frequency
and time, with a bandwidth of 39.9 MHz divided into 1024 channels of width 38.9 kHz and
an observation time of 3640 s divided into 364 time bins with subintegration time 10 s. The
scintles (elongated patchy regions) that are characteristic of scintillation are clearly visible.

Evidence of interstellar scintillation can be seen in dynamic spectra from the patchy

regions of power known as “scintles” that commonly appear. The approximate widths of
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these scintles in time and frequency are ∆tDISS and ∆νDISS, respectively (Stinebring, 2007).

2.1.1 Secondary Spectra

Figure 2.2: An example secondary spectrum from an observation of pulsar B0450-18 (Stine-
bring et al., 2022). Power, in decibels, is plotted as a function of time delay τ , on the order
of µs, and Doppler frequency shift fD, on the order of mHz. A parabolic scintillation arc is
clearly visible.

The crisscross patterns that can be seen in dynamic spectra imply a periodicity in

time and frequency. This provided the impetus for performing a 2D Fourier transform of

the dynamic spectra (Stinebring et al., 2001, e.g.). The power spectrum of this transform is

called the secondary spectrum, defined as

S2(fν , ft) =
∣∣∣S̃(ν, t)

∣∣∣2 ,
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with S(ν, t) the dynamic spectrum and S̃ its 2D Fourier transform (Hill et al., 2003). The

axes of the secondary spectrum are conjugate time, ft, and conjugate frequency, fν . These

are also often respectively denoted as fD
1 and τ , as will be explained in Section 2.2.4.

An example secondary spectrum is shown in Figure 2.2. Note that power is concentrated

in a parabolic arc. These parabolic arcs are called scintillation arcs, and are characteristic

features of pulsar observation observed in a large number of pulsars (Stinebring et al. (2022),

Main et al. (2023). A physical explanation for such arcs is given in Section 2.3.

2.1.2 The Wavefield

In simulations of pulsar scintillation, we are often not just interested in the secondary spec-

trum for a simulated observation, but also a representation known as the wavefield. The

wavefield W (fν , ft) can be thought of as the 2D Fourier transform of E(t, ν), the electric

field at the observer. We can also understand the secondary spectrum as the autoconvo-

lution of the wavefield (Baker et al., 2022). Thus, the wavefield representation is a useful,

and, in a sense, more fundamental way to represent information about scintillation, and we

will calculate it in our simulations (see Chapter 4). An example wavefield is shown with its

corresponding secondary spectrum in Figure 2.3.

2.2 Modeling Scattering in the Interstellar Medium

2.2.1 Point Model

Consider a system of an observer, a pulsar located a distance Dpsr away, and a thin screen

of plasma between them at a distance Dscr. The pulsar, screen, and observer each have

associated (2D) transverse velocities of vpsr, vscr, and vobs respectively. We can use the

parameter s ∈ [0, 1] to describe the distance to the screen, with s = (Dpsr −Dscr)/Dpsr.

Thus, the screen is a distance sDpsr from the pulsar and (1− s)Dpsr from the observer.

1Also written as fd
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Figure 2.3: An example wavefield from an observation of pulsar B1508+55 shown on the right,
with the corresponding secondary spectrum shown on the left. The secondary spectrum is
the autoconvolution of the wavefield. Figure from Sprenger et al. (2022). The wavefield
is not generally directly observable, and the wavefield shown here was calculated using an
assumption of 1-D scattering.

Now, consider two ray paths traveling from the pulsar to the observer. The first ray

travels directly along the line of sight, with no deflection. The second ray travels at an angle

θpsr to the first and is scattered off of a point at the screen, approaching the observer at an

angle θobs relative to the first ray. This situation is represented in Figure 2.4. The two rays

then recombine at the observer. Because the source is a pulsar, the rays are coherent, so

the electric field at the observer is the sum of the two rays. When the rays recombine, they

interfere with each other. Because we are dealing with only two rays, we can understand this

situation as analogous to two-slit interference. This is represented in Figure 2.5, in which we

have a broadband incident plane wave of light passing through two slits a distance D from

the observer. One slit is directly along the line of sight, while the other is offset from the

line of sight by a distance d. The light produces an interference pattern at the observer’s

plane. If the observer moves along this plane at a speed v, the intensity of light observed will

change periodically with time. The spacing y between fringes in the interference pattern is

given by y = (λ/d)D = λ/θ, with θ = d/D under a small angle approximation. This is the
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Figure 2.4: The point model of scattering - angles on mas scale

periodicity in space, but, since our observer is moving through space at speed v, they will

experience intensity as varying in time with a periodicity of ∆t = λ/(vθ), or a frequency of

ft =
v

λ
θ. (2.1)

A periodicity in frequency is also introduced because the light from both slits is broad-

band, with a range of frequencies and associated amplitudes. The two slits are at differ-

ent distances to the observer, with the path length difference between them being ∆l =
√
D2 + d2 − D = D

[
(1 + θ2)1/2 − 1

]
≈ D(1 +

1

2
θ2 − 1) =

D

2
θ2. The time delay is then

τ =
D

2c
θ2. This time delay will cause the signal from the upper slit to be shifted in phase

relative to the signal from the lower slit. However, this phase shift will be frequency de-

pendent since ∆φ = ω∆t = 2πντ . If, at some frequency ν, ντ = n for some integer n, the

component of the two signals at this frequency will be in phase, and constructively interfere.

At other frequencies, the two signals will arrive out of phase. Thus, the intensity of light at
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Figure 2.5: An analogous situation to the point model of scattering with an incident plane
wave of light passing through two slits separated by a spacing d located at a distance D
from the observer. The light produces an interference pattern at the observer’s plane. If
the observer moves along this plane at a speed v, the intensity of light observed will change
periodically with time and frequency.

the observer will be periodic in frequency, with a period of ∆ν =
1

τ
between peak intensities,

or a modulation frequency of

fν = τ =
D

2c
θ2. (2.2)

The quantities fν and ft are related, as we can discover by seeing how they evolve in time

and frequency, respectively. Starting from Equation 2.2, we find

dfν
dt

=
d

dt

(
D

2c
θ2

)
=
D

c
θ

dθ

dt
. (2.3)
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Recall that θ = d/D, so θ̇ = ḋ/D = v/D, as distance d changes as the line of sight moves at

the speed of the observer. Thus,

dfν
dt

=
v

c
θ. (2.4)

Meanwhile, the frequency derivative of ft is given by

dft
dν

=
d

dν

(νv
c
θ
)

=
v

c
θ. (2.5)

We find that

dfν
dt

=
dft
dν

. (2.6)

From this, we can see that ft is linearly related to ḟν , scaling with frequency:

ft = νḟν . (2.7)

Note that ft has units of time, and is equal to the geometric time delay τ between the two

signals. Thus, ft is often referred to simply as the time delay or geometric delay and denoted

τ . Likewise, fν has units of frequency, and is often denoted as fD and called the Doppler

shift. Section 2.2.4 will show that fD can be found as the relative Doppler shift between a

scattered image and a line of sight image. Section 2.2.4 will also derive τ as the geometric

time delay between the scattered and line of sight images for the slightly more complicated

geometry of Figure 2.4. The results are quoted below, but they should look very familiar to

Equations 2.2 and 2.1:

τ =
1

2c
Deffθ

2
obs, (2.8)

fD =
ν

c
veff,‖θobs. (2.9)

Here, Deff is given by

Deff =
1− s
s

Dpsr =
DpsrDscr

Dpsr −Dscr

, (2.10)
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while veff,‖ is the velocity of the interference pattern with respect to the observer in the

direction to the line of images, given by

veff,‖ =
1− s
s

vpsr,‖ −
1

s
vscr,‖ + vobs,‖. (2.11)

Derivations for Deff and veff,‖ are also given in Section 2.2.4.

2.2.2 Oscillator Model

Figure 2.6: The oscillator model of scattering. A line of signal generators moves with speed
veff at a closest-approach distance of Deff .

The oscillator model is the next step up in complexity from the point-scattering model.

Now, instead of one image, we have multiple images represented by a line of n signal genera-

tors in the sky. The line of signal generators is a distance Deff away and moves with a speed

of veff as shown in Figure 2.6. Each oscillator is a coherent source that emits the same signal
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at a range of frequencies, mimicking the signal from a pulsar. Each signal generator also

produces a different intensity of signal, with the oscillator closest to the line of sight produc-

ing the strongest signal representing the unscattered line-of sight signal. We can represent

this by giving each oscillator a complex magnification µ, with the amplitude representing the

strength of the signal and the phase representing the electromagnetic phase of the signal.

Unlike with the point model, where we have interference between only two signals, here we

have interference between many signals at once. If we consider the interference between os-

cillator j and oscillator k, we will find that they produce interference that is periodic in time

and frequency akin to the point model, with

τjk =
1

2c
Deff

(
θ2
j − θ2

k

)
, (2.12)

and

fD,jk = −ν
c
veff (θj − θk) . (2.13)

The electric field at the observer from such interference as a function of time and frequency

is then a 2D sinusoid given by:

Ejk(t, ν) = µjµk exp 2πi (τjkν + fD,jkt). (2.14)

An example of a 2D sinusoid is shown in Figure 2.7. If we want to find the total electric field

at the observer, we need to consider the interference between all pairs of oscillators, summing

up all the 2D sinusoids from each pair. This is given by:

Etot(t, ν) =
n−1∑
j=1

n∑
k=j+1

Ejk(t, ν). (2.15)
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Figure 2.7: An example of a 2D sinusoid, in this case the function f(x, y) = sin(5x + 5y),
plotted on the interval x ∈ [0, 2π] and y ∈ [0, 2π].

2.2.3 Screen Model

The screen model is the model that we will use to understand the scattering of a pulsar

signal. However, we have already identified all of the main features of the screen model in

previous models. I list them below to provide a concise description of what we have learned

so far:

• Unlike the point and oscillator models, we consider a scattering screen to have a con-

tinuous line of images rather than a discrete set of images. However, we will inevitably

have to approximate a screen as a set of discrete images in order to simulate it.

• Screen images lie along a line contained within a plane perpendicular to the line of

sight. We say that a screen has 1D anisotropy because scattering occurs along this

line, which is sometimes referred to as a line of anisotropy.

• A screen can have some transverse velocity vscr and is located at a distance sDpsr from
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the pulsar and a distance Dscr = (1 − s)Dpsr from the observer. θobs describes the

position of a point on the screen (see Figure 2.4), where θobs = d/Dscr and d is the

distance between the point intersecting the line of sight and that particular point.

• Interference between the line of sight image and a scattered image on the screen is given

by Equations 2.8 and 2.9.

• As with the oscillator model, we can give each point on the screen a complex magni-

fication µ, although µ now follows a continuous distribution µ(θobs). The electric field

from the interference between two screen images is also given by Equation 2.14.

2.2.4 Derivation of a one-screen model

In this section, we will derive the time delay and doppler shift for a one-screen model of

scattering.

Derivation of τ

We will begin with the situation in Figure 2.8. The time delay can be found by first finding

the path-length difference between the scattered and unscattered rays. The unscattered ray

travels a distance of Dpsr. The scattered ray travels in two legs: from the pulsar to the screen

and from the screen to the observer. The distance traveled from the pulsar to the screen is

given by the Pythagorean theorem as

√
(Dpsrs)2 + (Dpsrsθpsr)2 = Dpsrs

√
1 + θ2

psr. (2.16)

Meanwhile, the distance traveled from the screen to the observer is given by

√
(Dpsr(1− s))2 + (Dpsr(1− s)θobs)2 = Dpsr(1− s)

√
1 + θ2

obs. (2.17)
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Figure 2.8: The point model of scattering, highlighting that θpsr = (1− s)θobs/s.

The total path length is the sum of these two legs, so the difference in path length is

∆l = Dpsrs
√

1 + θ2
psr +Dpsr(1− s)

√
1 + θ2

obs −Dpsr. (2.18)

Both θpsr and θobs are very small, so we can approximate the square root as 1 + θ2/2. This

gives us

Dpsr

[
s

(
1 +

θ2
psr

2

)
+ (1− s)

(
1 +

θ2
obs

2

)
− 1

]
(2.19)

= Dpsr

[
s+ s

θ2
psr

2
+ 1− s+ (1− s)θ

2
obs

2
− 1

]
(2.20)

= Dpsr

[
s
θ2

psr

2
+ (1− s)θ

2
obs

2

]
. (2.21)

We can now observe that the our two angles are both opposite the same length, allowing us

to solve for θpsr in terms of θobs:

θpsr =
1− s
s

θobs. (2.22)
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Substituting this into equation 2.21 gives us

∆l = Dpsr

[
s

(
1− s
s

)2
θ2

obs

2
+ (1− s)θ

2
obs

2

]
(2.23)

=
Dpsr

2
θ2

obs

[
(1− s)2

s
+
s(1− s)

s

]
(2.24)

=
Dpsr

2
θ2

obs

[
1− s
s

((1− s) + s)

]
(2.25)

=
Dpsr

2

1− s
s

θ2
obs. (2.26)

Time delay is then this quantity divided by the speed of light:

τ =
∆l

c
=
Dpsr

2c

1− s
s

θ2
obs. (2.27)

At this point, we introduce Deff = Dpsr
1− s
s

. This gives us the familiar looking equation

τ =
Deff

2c
θ2

obs. (2.28)

Derivation of fD

Doppler shift is given by

∆ν =
∆v

c
ν0. (2.29)

Here, ∆v is the relative speed at which the source is moving towards or away from the

observer. In our one-screen model, the images are moving transverse to the line of sight at

a speed veff,‖. Relative to the observer, this velocity will have both a transverse and radial

component. Directly at the line of sight, the motion is entirely transverse, so the radial

component is zero and consequently the Doppler shift is also zero.2 However, as we look at

2Note that the line of images as a collective can also be moving radially towards or away from the observer,
but this radial motion is nearly the same for all images and therefore contributes negligibly to the relative
Doppler shift.
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Figure 2.9: A diagram showing how the velocity of the screen images relative to the line
of sight, vlos,‖, can be calculated as a sum of velocities of the pulsar, screen, and observer,
weighted by the distance the line of sight moves at the screen if pulsar, screen, or observer
move a distance of one unit in the transverse direction.

images further away from the line of sight, we introduce a radial component that increases

the further away we look. If we look an angle θobs away from the line of sight, the radial

component is veff,‖ sin θobs. With a small angle, we can approximate this as

veff,‖θobs (2.30)

It still remains for us to find veff,‖. veff,‖ is the speed at which the images are moving

transverse to the line of sight from the perspective of the observer. However, it will be easier

for now to find the speed of the line of sight vlos,‖ relative to the screen. This can be found

by taking a weighted sum of the velocities of the pulsar, the observer, and the screen, as is

shown in figure 2.9. The weights are found by how far the line of sight moves at the screen

if the pulsar, screen, or observer move a distance of one (arbitrary) unit in the transverse
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direction.

If the pulsar moves one unit in the transverse direction, the line of sight moves a distance

of 1 − s units at the screen. If the screen moves one unit in the transverse direction, the

line of sight, relative to the screen, moves −1 units. If the observer moves one unit in the

transverse direction, the line of sight moves a distance of s units at the screen. So, we can

construct vlos,‖ as

vlos,‖ = (1− s)vpsr,‖ − vscr,‖ + svobs,‖. (2.31)

Now, to find veff,‖, we can take vlos,‖ and convert it to a velocity relative to the observer.

The relative weights of the velocity terms will be preserved, but the weighting of the vobs,‖

term should now be 1. So, we can divide by s to find

veff,‖ =
1− s
s

vpsr,‖ −
1

s
vscr,‖ + vobs,‖. (2.32)

With this knowledge, we can now calculate the Doppler shift. Using equations 2.29 and 2.30,

we find for a particular image that

∆ν =
ν

c
veff,‖θobs. (2.33)

Now, fD is the relative Doppler shift between the two images. But, if the first image is at

the line of sight, the Doppler shift is zero. So

fD = ∆ν − 0 =
ν

c
veff,‖θobs. (2.34)

2.3 Scintillation Arcs

As previously mentioned, scintillation arcs are parabolic arcs of power in secondary spectra

that are characteristic of diffractive scintillation by 1D screens. Scintillation arcs have been

observed in dozens of pulsars (Stinebring et al., 2022), and this section will discuss these
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arcs to explain their importance in uncovering the physical parameters underlying a pulsar’s

scintillation.

As we have shown, τ and fD are both parameterized by θobs, the angle at the observer

between the line of sight and the image. We can use this to solve for τ as a function of fD.

First, from Equation 2.9

θobs =
c

νveff,‖
fD. (2.35)

Substituting this into Equation 2.8, we find

τ =
Deff

2c

c2

ν2v2
eff,‖

f 2
D. (2.36)

We have found a quadratic relationship between τ and fD given by

τ = ηf 2
D, (2.37)

where the arc curvature η is given by

η =
Deffc

2ν2v2
eff,‖

. (2.38)

η is a parameter that can be directly measured from a secondary spectrum. Thus, it can

be used as a powerful tool for finding Deff , which is much harder to measure directly. The

very existence of a parabolic arc in the secondary spectrum is also evidence of 1D screen-like

scattering, since it is only this geometry that produces a relationship between τ and fD for

which Equation 2.37 holds. As a result, observing scintillation arcs and measuring η are the

main ways of characterizing pulsar scintillation.

2.3.1 Multiple Arcs

The secondary spectra of some pulsars have been observed to contain not just one scin-

tillation arc, but several arcs of different curvatures. For example, McKee et al. (2022) have
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Figure 2.10: A secondary spectrum of B1133+16 showing multiple clear arcs, labeled B, C,
D, and E. Figure taken from McKee et al. (2022).

identified six arcs in the secondary spectra of pulsar B1133+16. If one scintillation arc cor-

responds to a single screen along the line of sight, then multiple arcs correspond to multiple

screens. However, not all arcs are likely to be as visible as others, and a system may have

different screens visible in different observations. The easiest way to identify multiple screens

is to observe multiple arcs in a secondary spectrum. This is the case with B1133+16, as

can been seen in Figure 2.10. However, there are some systems with multiple screens where

the identification of multiple arcs is not as straightforward. This is the case with pulsar

B1508+55 as shown by Sprenger et al. (2022), and it is also the case with the pulsar under

study here, B1737+13.

2.3.2 Scintillation Arc Substructure

While some scintillation arcs have power in a thin, well defined parabola, others have

more complicated substructure. The most common example are inverted arclets. These are

parabolic arcs that open downwards, are much smaller in extent than the main arc, and have

their apexes at a point on the main arc. Recall equations 2.12 and 2.13, which differ from
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the general expressions for τ and fD in that their theta terms involve two angles, θj and θk.

If one of these angles is zero, then these equations reduce to 2.8 and 2.9, from which we get

our equation for the main parabola. If, however, we fix θj to be non-zero, then we can write

our equations as

τ = τj −
Deff

2c
θ2
k (2.39)

and

fD = fD,j +
νveff,‖

c
θk, (2.40)

where τj and fD,j are the values of τ and fD from interference between θj and the line of

sight. We can then again find τ as a function of fD by first noting that

θk =
c

νveff,‖
(fD − fD,j). (2.41)

Substituting this into Equation 2.39, we find

τ = τj −
Deff

2c

(
c

νveff,‖
(fD − fD,j)

)2

. (2.42)

Therefore,

τ − τj = −η(fD − fD,j)
2. (2.43)

This is a parabola that opens downwards with curvature −η and apex at (fD,j, τj). In other

words, this describes an inverted arclet. We can see, then, that an inverted arclet arises from

interference between screen images and another image not on the line of sight.

2.3.3 Anisotropy Angle

In the previous sections of this chapter, we have referred just to veff,‖ when calculating

fD, remaining agnostic about the direction of anisotropy at which the images are found.

However, this does not have to be the case. Let us now let the 1D anisotropy on the screen
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be at angle α with respect to some reference. A natural reference to use is a line in the

transverse plane at constant declination for the observer. This will be the x̂ direction, while

the ŷ direction will be in the transverse plane normal to x̂. We will define the origin of

our scattering screen to be at the intersection of this line with the line of sight. Under this

framework, we can define the vector quantity θobs representing a dimensionless position that

gives the coordinates of an image on the screen as

θobs = Dscrθobs (cosαx̂+ sinαŷ ) . (2.44)

We can now also define the effective velocity as a vector quantity with respect to the same

coordinate system, with

veff =
1− s
s
vpsr −

1

s
vscr + vobs. (2.45)

For the purposes of calculating the Doppler shift, we need the component of veff in the

direction of θobs, as this is the velocity along the line of images. Thus, we can write the

Doppler shift as

fD =
ν

c
(veff · θobs) (2.46)

or

fD =
ν

c
veffθobs cosα. (2.47)

The curvature, η, can now be written as

η =
Deffc

2ν2v2
eff cos2 α

. (2.48)

As a result, η is now not just dependent on Deff and veff , but also on α.
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Chapter 3

Measuring Arc Curvature

As described in Section 2.3, the curvature of a scintillation arc has a direct correspondence

with the physical parameters of the corresponding screen(s) that produce the arc. Thus,

measuring the curvature of an arc is a vital step in the analysis of scintillation data. In this

section, I will outline the various methods used to measure arc curvature. These techniques

apply both image processing techniques and an understanding of the pulsar-screen-Earth

system.

3.1 Manual Arc Measurement

A straightforward method of measuring arc curvature is simply to have a human manually

identify the arc to be measured and then to identify points in the arc that can be used to

produce a best-fit value of curvature using a least-squares fit. This process makes use of

a free web-based tool called WebPlotDigitizer, which allows the user to identify points of

interest in an image and extract their coordinates (Rohatgi, 2022). A process for manually

measuring arc curvature from a secondary spectrum is outlined as follows:

1. Upload and open the image of the secondary spectrum in WebPlotDigitizer.

2. Use the Calibration tool to identify the axes in the image and their scale.
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3. Use the “Add Point” tool to identify points in the arc that can be used to produce a

best-fit value of curvature.

4. View the data produced, and export it to a text file.

5. Using a data analysis software of choice, fit a 2nd order polynomial to the data points

and extract the curvature value as the coefficient of the 2nd order term.

A visual demonstration of this process is shown in Figure 3.1.

3.1.1 Linearizing the Secondary Spectrum

While the manual measurement of a parabolic arc is generally straightforward, it is much

easier for the eye to identify a straight line than a parabola. Thus, we can linearize the

secondary spectrum before arc measurement to make the process easier, following the example

of Sprenger et al. (2022). For a parabolic arc passing through the origin given by τ = ηf 2
D,

we can linearize the secondary spectrum by plotting
√
τ vs. fD, with

√
τ =

√
ηfD. This

transformation is shown in Figure 3.2. Manual measurement can then be performed on the

transformed image, this time fitting a first-order polynomial to the points on the arc identified

by the user. The curvature value is then the square of the coefficient of the first-order term.

3.2 Theta-Theta Mapping

Recall that, for a 1D anisotropic screen, we can express τ and fD corresponding to two

interfering rays from screen positions θ1 and θ2 as

τ =
1

2c
Deff(θ2

1 − θ2
2) (3.1)

fD = −ν
c
veff,‖(θ1 − θ2), (3.2)
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Figure 3.1: A demonstration of the manual measurement process using WebPlotDigitizer. In
panel (a), the user identifies the axes and calibrates the scale. In panel (b), the user selects
points from which to extract coordinates. In panel (c), the user has exported the coordinates
to a text file for analysis. In panel (d), the user has fit a 2nd order polynomial to the data
from which the curvature value can be extracted.
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Figure 3.2: An example of the linearization of a secondary spectra for an observation of
pulsar B1737+13. The parabolic arc has been transformed into two straight lines, making
manual curvature measurement easier.

and a scintillation arc curvature from such a screen

η =
cDeff

2ν2v2
eff,‖

, (3.3)

where veff,‖ = veff cosα. τ and fD are observational parameters that can be measured from a

secondary spectrum, but θ1 and θ2 are physical parameters related to the screen. Thus, if we

are interested in learning about the 1D screen that can produce a given secondary spectrum,

it is helpful to move from our observational parameters to physical ones. This is the aim

of the theta-theta mapping technique, which was first developed by Sprenger et al. (2021).

To transform a secondary spectrum (τ vs. fD) into theta-theta space (θ2 vs. θ1), we solve

equations 3.1 and 3.2 for θ1 and θ2 in terms of τ and fD.

Following the derivation of Sprenger et al. (2021), we can simplify this process by defining

θ̃i = −
νveff,‖

c
θi, (3.4)
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which allow us to write our equations for τ and fD as

τ = η(θ̃1
2 − θ̃2

2
), (3.5)

fD = θ̃1 − θ̃2. (3.6)

Note then that we can linearize our expression for τ by taking
τ

fD

instead:

τ

fD

= η(θ̃1 + θ̃2). (3.7)

This now gives us two linear equations for two unknowns, θ̃1 and θ̃2, which can be easily

solved:

θ̃1 =
1

2

(
1

η

τ

fD

+ fD

)
, (3.8)

θ̃2 =
1

2

(
1

η

τ

fD

− fD

)
. (3.9)

Thus, we now have equations for transforming a secondary spectrum into theta-theta

space. We can now convert back from θ̃1 and θ̃2 to θ1 and θ2 using equation 3.4. However,

this is a non-linear transformation, which presents several challenges. θ1 and θ2 diverge at

fD = 0, and one pixel in theta-theta space can correspond to multiple pixels in the secondary

spectrum. To account for this, Sprenger et al. (2021) develop an approach that first defines

a grid of pixels in theta-theta space. Then, for each pixel, the θ1 and θ2 values corresponding

to the corners of the pixel are transformed to secondary spectrum coordinates, defining an

area in the secondary spectrum. The intensity of the pixel in theta-theta space can then be

found by integrating the intensity over the corresponding area in the secondary spectrum.

Note that theta-theta mapping assumes a curvature of η for the transformation. Suppose

now that our 1D screen has a curvature of η′, with ε = η′/η. Using equations 3.5 and 3.6 and

following Sprenger et al. (2021), we write the transformation equations to θ̃1 and θ̃2 from a
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pair of angles φ1 and φ2 as:

θ̃1 =
1

2

(
η′(φ2

1 − φ2
2)

η(φ1 − φ2)
+ φ1 − φ2

)
(3.10)

θ̃1 =
1

2
(ε(φ1 + φ2) + φ1 − φ2) (3.11)

θ̃1 =
ε+ 1

2
φ1 +

ε− 1

2
φ2. (3.12)

Likewise,

θ̃2 =
ε− 1

2
φ1 +

ε+ 1

2
φ2. (3.13)

If we now solve for θ̃1 in terms of θ̃2, we get

θ̃1 =
ε+ 1

2
φ1 +

ε− 1

2

2

ε+ 1

(
θ̃2 −

ε− 1

2
φ1

)
(3.14)

θ̃1 =
ε− 1

ε+ 1
θ̃2 +

1

2

(
(ε+ 1)− (ε− 1)2

ε+ 1

)
φ1 (3.15)

θ̃1 =
ε− 1

ε+ 1
θ̃2 +

2ε

ε+ 1
φ1. (3.16)

Similarly, we find

θ̃2 =
ε− 1

ε+ 1
θ̃1 +

2ε

ε+ 1
φ2. (3.17)

As ε→ 1, our guess η approaches the true η′, and the equations reduce to

θ̃1 = φ1 (3.18)

θ̃2 = φ2, (3.19)

and letting φ1 or φ2 vary will give us straight horizontal or vertical lines in theta-theta space.

If, however, we make a bad guess of η, then we will not get horizontal and vertical lines. This

property of theta-theta mapping allows us to test whether our guess of η is accurate. Two
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Figure 3.3: Theta-theta maps made using a good guess of η = 0.026 s3 (left) and a bad guess
of η = 0.010 s (right). The left image shows clear horizontal and vertical lines that indicated
our guess of η was accurate. The features in the right image are inclined from the horizontal
and vertical, indicating that our guess of η was not accurate. These theta-theta maps were
both made using the same observation of PSR B1737+13 at 1175 MHz on MJD 53830 using
code provided Tim Sprenger.

theta-theta maps are shown in Figure 3.3 demonstrating a map made with a good guess of

η and a map made with a bad guess of η.

Theta-theta mapping was performed using two different codes. The first used an imple-

mentation developed by Baker et al. (2022) contained within the Scintools Python package

(Reardon, 2023) (Reardon et al., 2020). This was used for coherent theta-theta mapping,

where only a chunk of the dynamic spectrum is used to make the theta-theta map. The

second used a standalone Python implementation of theta-theta mapping provided by Tim

Sprenger. This was used for incoherent theta-theta mapping, where the entire dynamic

spectrum is used to make the theta-theta map.
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3.2.1 Physical Significance of the Theta-Theta Map

For a given pixel with coordinates (θ1, θ2) in the theta-theta map, the intensity of the

pixel is given by the intensity of pixels in the secondary spectrum that correspond to light

received from the interference between rays from screen positions θ1 and θ2. If we consider the

brightness distribution B(θ) that gives the intensity of light received from position θ on the

screen, we can think of the theta-theta map as the outer product of B(θ) with itself. Hence,

one way to recover the underlying brightness distribution B(θ) is to find the eigenvector of

the theta-theta map that corresponds to the largest eigenvalue (Baker et al., 2022).

3.3 Curvature Search Algorithms

If one already has determined a guess of η, then theta-theta mapping is a useful tool

for testing whether the guess is accurate. However, the repeated application of theta-theta

mapping with a range of η can also be used on its own to find η. One way to do this is

simply by performing theta-theta mapping with a range of η and then visually inspecting

the resulting maps to find which η gives closest to horizontal and vertical lines. Fortunately,

Baker et al. (2022) have developed an automated algorithm for measuring curvature with

higher precision than is possible using a guess-and-check method. These methods use the

principle that the brightness distribution B(θ) can be modeled as the dominant eigenvector

of the theta-theta map.

If we perform theta-theta mapping with a guess of η, we can find the dominant eigenvector

and create a model theta-theta map using the outer product of the eigenvector with itself.

If we make a good guess of η, then the model represented by the dominant eigenvector will

correspond well with the physical reality. Baker et al. (2022) use the model theta-theta map

to construct a model dynamic spectrum, and then compare the model dynamic spectrum to

the observed dynamic spectrum through a chi-squared analysis. In this procedure, the value

of η that minimized the chi-squared value is taken to be the best guess of η. This lowest
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value can be found by fitting a parabola to the chi-squared values as a function of η, as a

this is more likely to correspond to a physical best-fit for η than simply taking the minimum

value of the chi-squared. Another method for finding the best-fit η is, instead of finding the

chi-squared value, to simply save the largest eigenvalue of the theta-theta map. A peak in

the distribution of max eigenvalues as a function of η can then be used to find the maximized

largest eigenvalue, which corresponds to the best-fit η.

To improve the precision of the curvature search, it is important that images on the screen

do not move much over the course of the observation. It is also important that curvature

not vary much in an observation. Of the two, curvature variation is a larger problem, as

our observation spans a range of frequencies, and arc curvature is expected to vary with fre-

quency. To account for this, Baker et al. (2022) divide the dynamic spectrum into “chunks”

with much smaller frequency ranges (and, if necessary, smaller time ranges), performing an

arc curvature search on each chunk.

By dividing each observation into chunks, we then obtain many arc curvature measure-

ments for each observation. With 144 observations of PSR B1737+13, we quickly require

an efficient way to sift through the various measurements and identify where our search

algorithm has returned plausible measurements and where it has failed to accurately find

curvature. To do this, we use a ranking scheme to identify, by eye, the highest quality mea-

surements. The ranking scheme ranks each arc curvature measurement (corresponding to a

single chunk of one observation) from 0-5 as follows:

• 0: The search algorithm has failed to find a curvature measurement, and no estimate

is available.

• 1: The search algorithm has found a curvature measurement, but the measurement is

clearly flawed and unphysical.

• 2: The search algorithm has returned a curvature measurement, but the measurement

does not appear accurate.
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• 3: The search algorithm has returned a curvature measurement, but the fitting process

has clearly missed a different peak in the chi-squared/max eigenvalue distribution that

would have been more accurate.

• 4: The returned curvature measurement appears to be plausible, although it may lack

some precision.

• 5: The returned curvature measurement appears to be a highly accurate measurement.

For the purposes of our current investigation, only the measurements that were coded as 4

or 5 were used for further analysis.

The full procedure for using curvature search algorithms to measure η is outlined as

follows:

1. Take one observation and divide the dynamic spectrum into 32 chunks 64 pixels wide

in frequency and spanning the full time range of the observation.

2. For each chunk, use the curvature search algorithm (either the chi-squared method or

the largest eigenvalue method) as proposed by Baker et al. (2022) as implemented in

Scintools.

3. Save the best-fit η from the measurement, as well as the distribution of chi-squared

values or max eigenvalues as a function of η. Also save a summary plot of the process

displaying the distribution with fit and dynamic spectra, secondary spectra, and theta-

theta map side-by-side with model versions for visual inspection. An example of such

a plot is shown in Figure XXX.

4. Repeat steps 2-3 for all 32 chunks, and repeat the process for all 144 observations.

5. Manually review each arc curvature measurement, using the summary plot to assign

each measurement a score 0-5 according to the ranking scheme outlined above.

6. Save the observations that scored 4-5 for further analysis.
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Figure 3.4: Example of a summary plot for a curvature search algorithm measurement. The
second-to-bottom row shows the largest eigenvalue distribution as a function of η, with the
fit to the peak shown. This was used, along with the secondary spectrum and theta-theta
map, to assign a score of 5 to this measurement.
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Chapter 4

Simulating Scintillation

Our aim in using simulations was, first, to better understand the dynamics of two-screen

scintillation, and, second, to model the PSR B1737+13 system in order to better constrain

its physical parameters. We made use of two different simulation frameworks, which are

outlined in the sections that follow. First, we used the Screens Python package developed

by Marten van Kerkwijk and Rik van Lieshout (2022). Additionally, we developed Python

code to model two screen systems using the mathematical framework developed by Sprenger

et al. (2022). I will outline the two frameworks in the sections that follow, with a focus

on how each approach finds τ and fD at the observer. In the last section, I will then show

how dynamic spectra are generated from the wavefield, as this process is the same for both

frameworks.

4.1 Screens Package

4.1.1 Code Framework

The Screens package provides an object-oriented framework for modeling observations of

pulsars with scattering from screens. They take advantage of Python classes, using different

classes to represent different objects in a Earth-screen(s)-pulsar system and make use of the
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Astropy package for handling units and coordinate transformations (Astropy Collaboration

et al., 2022). The parent class for all of these objects is the Source class, which defines

any object that can be observed. Each source can have an associated position and velocity

specified by Astropy’s CartesianRespresentation as well as a magnification used to indicate

the relative brightness of the source. The pulsar is specified by an instance of the Source

class.

Inheriting from the Source class is the Screen class. This class represents a collection of

images of a particular source of radiation. With the Screen class, we can specify the position,

velocity, and magnification of each image in the screen using arrays. The Screen class also

allows us to specify the source of the radiation that gives rise to the images, as well as the

screen’s distance from the source.

Two classes inherit from the Screen class. The Telescope class represents the observer;

here we specify the telescope’s position and velocity. The Screen1D class is used to represent

our canonical one-dimensional lines of images in a scattering screen. In addition to specifying

the position, velocity, and magnification of each image, we also specify the orientation of the

line of images as a unit vector in the direction of the normal vector connecting the line of

images and the line of sight.

The strength of the Screens package’s object-oriented framework is that it allows us to

easily construct a system of pulsar, screen(s), and observer. It should be noted that, in

an idealized scattering screen, the line of scattered images is continuous and given by a

continuous brightness distribution. However, for simulations we must discretize the line of

images into a finite number of points. The Screens package requires the user to specify the

position of each image as a distance along the line from the origin of the normal vector.

Magnification values are also specified for each point. For our simulations, we used complex-

valued magnification values given by

µj(xj) = A(xj)e
iφj (4.1)
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where µj is the magnification of the jth image, A(xj) is the real-valued brightness distribution

at the corresponding position xj, and φj is a random phase drawn from a uniform distribution

between 0 and 2π. All of the magnification values for a given screen are then normalized to

have a total magnitude of unity.

4.1.2 Calculating τ and fD

The Screens package is able to handle complex systems of pulsar, screens, and observer.

It does this through an iterative approach that considers the system as a series of nested

source and destination screens. For a given source screen and destination screen, the relative

positions and velocities of each point in the source screen with respect to each point in the

destination screen are calculated. Consider image j in the source screen and image k in the

destination screen, with the screens separated by a distance D and rjk giving the distance

between image j and image k when projected onto the same plane. The time delay τjk

associated with a ray of light traveling from image j to image k is given by

τjk =
D

2c
θ2
jk, (4.2)

where θjk is given as
rjk
D

. Using the relative velocity vjk of the two images projected onto

the same plane, we can also calculate the time derivative of delay, τ̇jk:

τ̇jk =
vjk
c
θjk. (4.3)

For each pair of images, we can use this to calculate τ and τ̇ associated with these images,

giving a total of N1 ∗ N2 values each for τ and τ̇ , where N1 and N2 are the number of

images in the source and destination screens, respectively. To propagate these images on

the destination screen to the next screen in a ray’s path, we make what was our destination

screen the new source screen and the new destination screen the next screen in the ray’s path.

So, when we consider image k in our new source screen and image l in our new destination
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screen, we can again calculate τ and τ̇ . However, we must also take into account that image

k already has a τ and τ̇ associated with it. van Kerkwijk & van Lieshout (2022) treat τ and

τ̇ as cumulative quantities, so that our new τ and τ̇ are given by:

τacc = τ0 + τkl = τ0 +
D

2c
θ2
kl (4.4)

and

τ̇acc = τ̇0 + τ̇kl = τ̇0 +
vkl
c
θkl, (4.5)

where τ0 and τ̇0 are the τ and τ̇ associated with image k in the source screen.

Now, there are actually N1 values of τ0 and τ̇0 for each image k in the source screen

associated with rays propagated from each of the N1 images in our original source screen. To

deal with this degeneracy, we consider there to be not N2 images in the new source screen,

but N2 ∗N1 images, many of which share the same associated position with each other. But,

each of these images has a unique τ0 and τ̇0 associated with it. Thus, if there are N3 images

in the new destination screen, there are N3 ∗N2 ∗N1 total unique τ and τ̇ values. If we then

wish to propagate these images on the third screen to the fourth screen, we need to consider

there to be N3 ∗N2 ∗N1 images in the third screen. If we continue this process for M screens,

our final destination screen will have NM ∗NM−1 ∗ · · · ∗N2 ∗N1 images.

To simplify this, rather than increasing the number of images with each successive screen,

Screens in its backend considers all screens to have NM ∗NM−1 ∗ · · · ∗N2 ∗N1 images. Many

of these images will share the same position, but each image will represent a unique ray path

from source to destination, and as such will have a unique τ and τ̇ . The advantage of this

approach is that each possible ray path has an associated index, allowing us to vectorize our

calculation of τ and τ̇ . For a particular ray path i, with i ∈ [1, NM ∗NM−1 ∗ · · · ∗N2 ∗N1],

we can calculate τi and τ̇i as:

τi =
M∑
j=2

τi,j−1,j (4.6)
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and

τ̇i =
M∑
j=2

τ̇i,j−1,j, (4.7)

where τi,j−1,j and τ̇i.j−1,j are the τ and τ̇ associated with a ray traveling from the ith image

in screen j − 1 to the ith image in screen j.

There is just one more step before we can proceed further. We have τ for each image at

our destination, but we do not have fD. The Screens package does not calculate fD directly,

but recall that we can calculate fD from τ̇ as

fD = ντ̇ , (4.8)

where ν is the frequency of the wave.

4.2 Sprenger et. al. (2022) Version

In their analysis of B1508+55, Sprenger et al. (2022) develop their own model for de-

scribing two-screen scattering. Sprenger et al. (2022) use a model beginning from Kirchoff

diffraction, which gives the electric field at a point with position p in the destination plane

as a function by integrating over all possible paths from some point s in the source plane to

p.

E(p) =
i

λ

∫
d2s

e2πi
d(p,s)
λ

d(p, s)
E(s) (4.9)

where d(p, s) is the distance between p and s. What interests us most is the phase term

e2πid(p,s)/λ, which is the phase shift experienced by the electric field as the wave travels from

s to p. Since the perpendicular distance between the two planes is much larger than the

extent of each plane, we can approximate d(p, s) to the first order as (p− s)2/2Dp,s, where

Dp,s is the perpendicular distance between the two planes. This then gives us the following
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equation for following equation for electric field at p:

E(p) =

∫
d2se

iπν
c

(p−s)2

Dp,s E(s) (4.10)

When our source plane is the pulsar and our destination plane is the observer, then the phase

shift is due only to the geometric distance between the pulsar and the observer. However,

when we have a diffraction screen, an extra phase shift φ is accumulated due to this diffraction.

For diffraction due to free electrons, as we have in the case of a scattering screen, the phase

shift is given by the dispersion measure (DM) of the path of propagation crossing the screen

at position x:

φ(x) = − 1

4πε0

e2

mec

DM(x)

ν
(4.11)

Sprenger et al. (2022) generalize this situation to the case where a ray travels from pulsar

to observer, being scattered en route by N screens. The phase shift experienced by the ray

is then given by the sum of the geometric phase shift from traveling the total path length

and the phase shift inflicted by diffractive scattering at each of the N screens. They also

allow for all planes (including the pulsar, observer, and all N screens) to have some velocity

with respect to a stationary reference frame, with position on the nth screen in this reference

frame given by Xn = xn + Vnt, where xn is the (unmoving) position on the nth screen in its

own frame and Vn is the velocity of the nth screen with respect to the stationary reference

frame.

In this formalism, we can write the total phase shift Φ experienced by a ray as:

Φ(x0,x1, . . . ,xN+1, t) =
N∑
n=1

φn(xn) +
N+1∑
n=1

πν

c

(xn − xn−1 + (Vn −Vn−1)t)2

Dn−1,n

. (4.12)

Here n = 0 corresponds to the observer plane, and n = N + 1 corresponds to the pulsar

plane. Thus, diffractive scattering only occurs at n = [1, N ], but the geometric phase shift is

accumulated as the ray travels between each consecutive pair of planes. If we then wish to
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find the electric field at the observer plane, we can use

E(x0, t) =

∫
eiΦ(x0,x1,...,xN+1,t) d2x1d

2x2 . . . d
2xN+1. (4.13)

Sprenger et al. (2022) then consider the case of a two-screen system, with observer plane

position given by P, pulsar plane position given by S, the screen closer to the observer given

by X, and the screen closer to the pulsar given by Y. They also assume the x and y screens to

have one dimensional anisotropy of the sort that produces scintillation arcs, with the angles

of the anisotropy relative to a fixed reference frame given by αx and αy. x‖ and y‖ give

the components of screen position in the direction of the anisotropy, while x⊥ and y⊥ give

the components of screen position in the direction perpendicular to the anisotropy. In this

case, the phase shift experienced by the ray (with time dependence built in to our position

coordinates) is given by:

Φ = φ1(x‖) + φ2(y‖) +
πν

c

[
(X−P)2

Dp,x

+
(Y −X)2

Dx,y

+
(S−Y)2

Dy,s

]
. (4.14)

After much algebraic manipulation, Sprenger et al. (2022) arrive at the following equation

for Φ in the two-screen case:

Φ(θx, θy, t) =
πν

c

(
Deff,xθ

2
x − 2Veff,x,‖θxt+Deff,yθ

2
y − 2Veff,y,‖θyt− 2Dmixθxθy +Kt2

)
, (4.15)

where we have introduced the parameters θx = x‖/Dp,x and θy = y‖/Dp,y as with the one-

screen case. The effective terms Deff,x, Deff,y, Veff,x,‖, Veff,y,‖, and Dmix are also used to mimic

the one-screen case, but are much more complicated:

Deff,x =
Dp,sDp,xDp,y

Dp,yDx,s −Dp,xDy,sδ2
, (4.16)

Deff,y =
Dp,sDx,sD

2
p,y/Dy,s

Dp,yDx,s −Dp,xDy,sδ2
, (4.17)
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Veff,x,‖ =
−Dp,sDp,yVx,‖ + δDp,xDp,sVy,‖ + γδDp,xDy,sVp,⊥ + γDp,xDp,yVs,⊥

Dp,yDx,s −Dp,xDy,sδ2
+ Vp,‖, (4.18)

Veff,y,‖ =
−Dp,sDx,sDp,yVy,‖/Dy,s + δDp,yDp,sVx,‖ − γDp,yDx,sVp,⊥ − γδDp,xDp,yVs,⊥

Dp,yDx,s −Dp,xDy,sδ2
+
Dp,y

Dy,s

Vs,‖,

(4.19)

Dmix =
δDp,xDp,yDp,s

Dp,yDx,s −Dp,xDy,sδ2
. (4.20)

Here, we have γ = sin(αx−αy), δ = cos(αx−αy), and K is a constant that is not dependent

on the screen positions and so is irrelevant for our further analysis.

For our simulations, our primary interest is in finding the τ and fD of a particular ray

passing through θx and θy. To do this, Sprenger et al. (2022) use the definition of the τ and

fD through a Fourier transform to find

τ =
∂Φ

2π∂ν

∣∣∣∣
t=0

, (4.21)

fD =
∂Φ

2π∂t

∣∣∣∣
t=0

. (4.22)

Using these expressions, we arrive at equations for τ and fD in the two-screen case as a

function of θx and θy:

τ(θx, θy) =
1

2c

(
Deff,xθ

2
x +Deff,yθ

2
y − 2Dmixθxθy

)
, (4.23)

fD(θx, θy) = −ν
c

(
Veff,x,‖θx + Veff,y,‖θy

)
. (4.24)

Thus, if we set up our two scattering screens in the same way as the Screens package (i.e.:

discrete images in the x and y screens), we can use these equations to find the τ and fD

associated with each possible combination of images in the x and y screens, for Nx and Ny

total images.
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4.3 Finding Dynamic Spectra from the Wavefield

We have shown that we can use either framework to arrive at the wavefield. While Screens

works with n screens, we will only consider the two-screen case. Suppose we want to find

the dynamic spectrum of a pulsar whose light is scattered by screens Y and X on its way to

us. We can define Ny images in the Y , each with an associated position and magnification,

with the magnification determined using a method such as that given by Equation 4.1. We

can then define Nx images in the X screen in a similar manner. We can then find τ and fD

using either framework, with NxNy points for each. For path j, the intensity of the wavefield

corresponding to τj and fD,j values is µj = µj,xµj,y: the product of all magnifications on path

j. We can then use the wavefield to reverse-engineer the dynamic spectrum. For a particular

point (t, ν), we can find the electric field at the observer as

E(t, ν) =

NxNy∑
j=1

µj exp [2πi (fD,jt+ τjν)] . (4.25)

The dynamic spectrum is then the intensity of the electric field,

S(t, ν) = |E(t, ν)|2. (4.26)
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Chapter 5

A 36-Epoch Observation of Pulsar

B1737+13

5.1 Characterizing the Data Set

Observations of pulsar B1737+13 were made using the Arecibo telescope in Puerto Rico

by Daniel Hemberger (Oberlin College ’07) and Dan Stinebring, mostly remotely. The data

set consists of 36 epochs of observations over a period of 38.5 weeks, with the first observation

on 5 April 2006 (MJD 53830) and the last on 31 December 2006 (MJD 54100). Observations

were 1 hour long and were made in 4 different frequency bands—1175 MHz, 1380 MHz, 1425

MHz, and 1470 MHz—using the L-wide feed and the WAPP spectrometers.1 Each frequency

band was 50 MHz wide, and the WAPP spectrometers were used with 2048 channels, giving

a channel width of 24.4 kHz (Hemberger & Stinebring, 2008). The data were then split into

360 time bins with subintegration times of 10 seconds, with the off-pulse signal subtracted

from the on-pulse signal before the signal was integrated over the 10 second time bin to pro-

duce a dynamic spectrum. The 144 dynamic spectra from each observation were stored as

individual FITS files.2 This same dataset was previously studied by Hemberger & Stinebring

1Information about the WAPP can be found at http://naic.edu/~wapp/
2FITS documentation can be found at https://fits.gsfc.nasa.gov/
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(2008).

From the first epoch of observation at MJD 53830, a well-resolved scintillation arc is visi-

ble. We also see a clear inverted arclet substructure. The arc is also more or less symmetric.

All of these factors would appear to indicate that we are viewing scattering from a single

screen, with little else that could be contributing to the scattering. Beginning at around

MJD 53880, we see the scintillation arc become wider, and the arc becomes more asymmet-

ric. During this time, we also see the inverted arclet substructure become less prominent.

By MJD 53899, the primary arc has become more diffuse and only a few signs of inverted

arclets remain. As time progresses, the inverted arclets disappear entirely and the primary

arc becomes blurred out and fuzzy, with the fuzziness beginning on the left side of the arc at

MJD 53894 and reaching the origin a few epochs later. We also see the fuzziness spread out

over a larger area, making the arc appear more distorted. At MJD 54019, we do not even see

an arc; we see only a region of power at the origin. At MJD 54036, however, the arc begins

to reemerge. The arc then becomes less fuzzy over the next few epochs. At MJD 54083, we

even see signs of inverted arclets returning on the left side of the arc. However, the secondary

spectrum does not return to its original state for the remainder of the observation period.

The evolution of the secondary spectrum is illustrated in Figure 5.1 with four epochs

spaced throughout the observation period. The secondary spectra from all 36 epochs of ob-

servation are shown for the 1175 MHz band, the 1380 MHz band, the 1425 MHz band, and

the 1470 MHz band in Figures 5.2, 5.3, 5.4, and 5.5, respectively.

5.2 Measured Curvatures

As noted previously, there is a clear primary arc throughout the dataset that is well re-

solved in some epochs. Establishing the curvature of this arc is described in Section 5.2.1.

However, we also wished to investigate the existence of any other arcs present in the sec-
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Figure 5.1: Secondary spectra from four epochs of observation of pulsar B1737+13 in the
1175 MHz band. In panel (a), at MJD 53830, a scintillation arc is well resolved and shows
inverted arclet structure. In panel (b), at MJD 53899, the inverted arclets are still present,
but the scintillation arc has become more diffuse. In panel (c), at MJD 54004, the inverted
arclets are no longer visible, and the scintillation arc is even more diffuse. In panel (d), at
MJD 54083, the scintillation arc has become less diffuse, and signs of inverted arclets are
visible again.
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1175 MHz

Figure 5.2: Secondary spectra from all 36 epochs of observation of pulsar B1737+13 in the
1175 MHz band. Corresponding dates of each observation are given above in MJD. All axes
are scaled the same running from -15 µs to 15 µs in τ and -40 mHz to 40 mHz in fd. Intensity
is scaled logarithmically, and each spectrum is normalized differently.
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1380 MHz

Figure 5.3: Secondary spectra from all 36 epochs of observation of pulsar B1737+13 in the
1380 MHz band. Corresponding dates of each observation are given above in MJD. All axes
are scaled the same running from -15 µs to 15 µs in τ and -40 mHz to 40 mHz in fd. Intensity
is scaled logarithmically, and each spectrum is normalized differently.
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1425 MHz

Figure 5.4: Secondary spectra from all 36 epochs of observation of pulsar B1737+13 in the
1425 MHz band. Corresponding dates of each observation are given above in MJD. All axes
are scaled the same running from -15 µs to 15 µs in τ and -40 mHz to 40 mHz in fd. Intensity
is scaled logarithmically, and each spectrum is normalized differently.
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1470 MHz

Figure 5.5: Secondary spectra from all 36 epochs of observation of pulsar B1737+13 in the
1470 MHz band. Corresponding dates of each observation are given above in MJD. All axes
are scaled the same running from -15 µs to 15 µs in τ and -40 mHz to 40 mHz in fd. Intensity
is scaled logarithmically, and each spectrum is normalized differently.
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Figure 5.6: Manually measured curvatures of the primary arc in the 1175 MHz band for the
first 14 epochs of observation. Error bars are shown with the color indicating the relative
size of the error, with error determined by the width in τ corresponding to between 1 and 3
cursor movements, depending on the resolution of the feature being measured.

ondary spectrum that could indicate the presence of an additional scattering screen. This

measurement process is described in Section 5.2.2.

5.2.1 Primary Arc

Primary arc curvature was measured manually as described in Section 3.1. Uncertainty

in the curvature measurement was determined by the width in τ corresponding to at least

one and up to three of the smallest possible movements of the cursor. One cursor movement

was used for the features that were easily resolved, while three cursor movements were used

for the features that were not as easily resolved. The results are shown in Figure 5.6 for the

1175 MHz band, which had the best resolution of any band. Arc curvature measurement was
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only performed for the first 14 epochs of observation, as the arc was not resolved enough in

subsequent epochs for a clear identification by eye. There is a clear outlier with epoch 3 (with

the first epoch being epoch 0) at MJD 53857, which has a measured curvature much lower

than the rest of the data. It has been previously suggested that this epoch may have been

mislabeled in frequency, resulting in an arc with an incorrect curvature when treated to be

also in the 1175 MHz band3. If we treat this epoch as an outlier, the remaining measurements

have an average curvature of 0.0262± 0.0002 s3 at 1175 MHz.

We also measured the curvature of the primary arc using a curvature search algorithm

as described in Section 3.3. Both the largest eigenvalue method and the smallest chi-squared

method were used with a chunk size of 64 frequency channels. This divided each observation

into 32 chunks of bandwidth 1.56 MHz, which was small enough to precisely measure arc

curvatures since curvature remained roughly constant over a single chunk. The error associ-

ated with a curvature measurement was taken from the best-fit for a parabola around a peak

in either the largest eigenvalue or chi-squared distribution; the standard deviation of the fit

parameter corresponding to the η value of the parabola apex was used as the error.

Since the primary arc was the most prominent feature in our secondary spectra, the curva-

ture search algorithm was able to measure it with greater precision and accuracy than other

features. As such, secondary spectra in which the primary arc was well resolved were often

given a score of 5, whereas secondary spectra with worse resolution or other features were

not given scores higher than 4. As a result, we used only measurements with a score of 5 to

find the curvature of the primary arc using this method. Measured curvature is shown as a

function of frequency in Figure 5.7 for the 1175 MHz band. Because we expect arc curvature

to have a
1

ν2
dependence, we fit for such a relationship and found a best-fit curvature of

η1175 MHz = 0.0267± 0.0001 s3

3Private communication with Robert Main.
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Figure 5.7: Measured curvatures using the curvature search algorithm in the 1175 MHz band
that were given a score of 5. The measurements are shown as a function of frequency and
span all epochs. The dotted red line shows the best fit curvature assuming a ν−2 frequency
dependence, which was found to be 0.0267± 0.0001 s3.
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Figure 5.8: Measured curvatures using the curvature search algorithm in the 1175 MHz band
that were given a score of 5. The measurements are shown as a function of epoch and
span Epochs 1 through 35. Arc curvature measurements remain fairly constant for these
measurements, consistent with a primary arc. Exceptions are epochs 2, 11, and 35, which
appear to have smaller curvatures. No measurements were scored 5 for epoch 3 and epochs
15 through 34, consistent with the arc not being resolved in these epochs.
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at 1175 MHz. This is consistent with the manually measured curvature.

Figure 5.8 shows the measured curvatures that were given a score of 5 as a function of

epoch for the 1175 MHz band. Consistent with our observation that the primary arc becomes

less resolved in later epochs, there were no measurements given a score of 5 for epochs 15

through 34. Of the measurements given a score of 5, the curvatures remain fairly constant,

as we would expect with a primary arc. There are a few exceptions, however. Epochs 2, 11,

and 35 appear to have smaller curvatures than the rest of the data. There also appears to be

a suggestion of a curvature increase in epochs 12-14 coinciding with the increasing fuzziness

of the arc.

From these measurements, the curvature of the primary arc is roughly between 0.026 and

0.027 s3 at 1175 MHz. This represents a scattering screen located at least 2.5 kpc from Earth

along the line of sight. This scenario of one scattering screen describes the early epochs well,

but is lacking when the primary arc becomes less resolved in later epochs to the point that

it cannot be measured. Thus, in the next section we investigate the possibility of additional

arcs.

5.2.2 Secondary Arc Curvatures

If we now consider measurements using our curvature search algorithm that were given a

score of 4 or 5, we see all measurements that gave a plausible curvature measurement for a

particular chunk of an observation. These measurements are shown in Figure 5.9 as a function

of frequency for the 1175 MHz band. The majority of the measurements are consistent with

the primary arc curvature, including the measurements given a score of 5. However, there

are a large number of measurements that differ significantly from the primary arc curvature.

These measurements complicate the picture of a single scattering screen.

More clarity can be gained by looking at the measurements as a function of epoch, as

shown in Figure 5.10. In the first 14 or so epochs, the measurements are mostly consistent

with the primary arc curvature. However, arc curvature appears to increase significantly
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Figure 5.9: Measured curvatures using the curvature search algorithm in the 1175 MHz band
that were given a score of 4 or 5, shown as a function of frequency and spanning all epochs.
While most of the measurements are consistent with a primary arc, there are a large number
that differ significantly from the primary arc curvature, indicating the presence of additional
scattering structures.
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Figure 5.10: Measured curvatures using the curvature search algorithm in the 1175 MHz band
that were given a score of 4 or 5, shown as a function of epoch. Measurements are consistently
around the primary arc curvature for the early epochs. However, curvature measurements
diverge from this pattern around epoch 15, with significantly higher curvature values of up
to 0.07 s3 being measured. Towards the end of the observation, the curvature measurements
become more consistent with the primary arc curvature, although some scatter remains.
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Figure 5.11: Curvature values for each epoch in each band, obtained by finding the best-fit
curvature at 1175 MHz for a ν−2 dependence across a single observation. The overall trend
for each band is fairly similar, although the three higher frequency bands have more scatter
than the 1175 MHz band. The scattering event previously identified around epoch 15 is
apparent in all four bands, although the three higher frequency bands increase in curvature
before epoch 15 and reach higher curvature values than the 1175 MHz band.

around epoch 15. We find many curvature values of between 0.04 and 0.07 s3, with curvature

increasing from epoch 15 to epoch 22 and then decreasing from epoch 22 to epoch 30. In the

last few epochs, measurements return at the primary arc curvature value. This suggests that

a scattering event took place around epoch 15 which is not consistent with one scattering

screen.

Thus far, we have treated different chunks of an observation as, roughly speaking, in-

dependent measurements at different frequencies. That is, each chunk could be treated as

a separate observation of potentially different scattering structures. However, treating each

chunk in an observation as reflecting the same scattering structure can help constrain arc

curvature for a particular observation. This can be done by performing a best fit of arc
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curvature as a function of frequency across a single observation, obtaining a single curvature

value for each observation. To perform these fits, we disregarded the scores assigned to ob-

servations and weighted each fit according to the error in each curvature measurement. The

results of these fits are shown in Figure 5.11. Best-fit curvature is shown for each epoch in

all four bands. The overall trend for each band is fairly similar, although the three higher

frequency bands have more scatter than the 1175 MHz band. The scattering event previously

identified around epoch 15 is apparent in all four bands, although the three higher frequency

bands increase in curvature before epoch 15. The highest two frequency bands reach higher

curvature values than the 1175 or 1380 MHz bands.

Since the four bands are probing four different frequency ranges, it would not be unrea-

sonable to see scattering behavior change across the bands. However, the fact that all four

bands show a similar trend in curvature suggests that the scattering behavior is similar across

the bands. As a result, we can constrain curvature further by treating all four bands for a

particular epoch as a single observation and finding a best fit curvature across the entire

range of frequencies. This is shown in Figure 5.12. The scattering event is still apparent,

and curvature values throughout the observations are consistent with measurements of each

band independently and, indeed, with measurements of each chunk of an observation inde-

pendently. A few epochs have lower curvatures, at around 0.02 s3. These include epochs 2,

3, 14, 16, 28, and 31.

Summary

A qualitative and quantitative analysis of the B1737+13 dataset under study has revealed

a number of interesting features. Both forms of analysis are in agreement that the primary

arc is best resolved during the early epochs, and then a scattering event occurs around epoch

15. This scattering event is characterized by two main features:

1. The primary arc becomes less resolved, looking “fuzzy” or diffuse.
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Figure 5.12: Curvature values for each epoch, obtained by finding fitting all four bands
simultaneously for a ν−2 dependence across a single observation. The scattering event is still
apparent, and curvature values throughout the observations are consistent with measurements
of each band independently. A few epochs have lower curvatures, at around 0.02 s3. These
include epochs 2, 3, 14, 16, 28, and 31.
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2. Measured curvature values increase significantly, from the primary arc curvature of

roughly 0.026 s3 to values of up to 0.070 s3.

In the next chapter, we will seek a model of scattering in the B1737+13 system that can

explain these features.
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Chapter 6

Modeling the Scintillation of Pulsar

B1737+13

6.1 Interaction Curvature

6.1.1 Definition

Consider a situation like that shown in Figure 6.1, where a primary scattering screen is

located closer to the observer than a secondary scattering screen. Both screens consist of

discrete scattering points for simulation purposes, and the primary screen is so called because

it contains more scattering points over a larger extent. When we simulate this system,

following the method of Screens (van Kerkwijk & van Lieshout, 2022), we will construct

the wavefield as a composite of the wavefield due to scattering off of both screens and the

wavefield due to scattering off of the primary screen only. Such a wavefield from a system

described above is show in panel (a) of Figure 6.2, where the primary arc is composed of 101

discrete scattering points and the secondary arc is composed of 5 discrete scattering points.

In this wavefield, we see the lower curvature primary arc as well as five arcs at much higher

curvature. The higher curvature arcs are also composed of 101 points, indicating that we are

seeing five copies of the primary arc, each corresponding to a different scattering point on
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Figure 6.1: A schematic of a system with a primary scattering screen (blue images) and a
secondary scattering screen (red images), with the primary scattering screen located closer
to the observer.

the secondary arc.

In panel (b) of Figure 6.2, we see the wavefield broken down by the scattering screen(s)

that produced it. The wavefield due to scattering off of both screens is shown in orange,

and the wavefield due to scattering off of the primary screen is shown in blue. The wavefield

due to scattering off of the secondary screen is shown in red for reference and connected by

a dotted parabola to indicate the curvature of the secondary screen. From that, we can see

that the higher curvature arcs have apexes that are located at points on the secondary arc.

Thus, although the secondary arc is not visible in the wavefield, it nevertheless also affects

the wavefield. Henceforth, I shall refer to these higher curvature arcs due to scattering off of

both screens as interaction arcs, with the curvature of interaction arcs being referred to as

the interaction curvature:

Interaction Arcs: Parabolic arcs in the wavefield of a two-screen system corresponding to

scattering by both screens.

Interaction Curvature: The curvature of an interaction arc; ηint.
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Figure 6.2: The wavefield from a situation like that in Figure 6.1, simulated using the
Sprenger et. al. equations. The primary screen is composed of 101 discrete scattering
points and located 2.5 kpc from the observer, and the secondary screen is composed of 5
discrete scattering points and located 3.2 kpc from the observer. In panel (a), the composite
wavefield from scattering due to both screens and scattering due to the primary screen only
is shown. In panel (b), the wavefield from the interaction of the two screens is shown in
orange, the wavefield from scattering due to the primary screen is shown in blue, and the
wavefield from scattering due to the secondary screen is shown in red and connected by a
dotted parabola to indicated the curvature of the secondary screen.
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6.1.2 A Problem Arises

No notion of interaction curvature exists in the literature, so we proceed into uncharted

territory to characterize how interaction curvature behaves in a two-screen system. To easily

find the interaction curvature of a two-screen system, we use a secondary screen consisting

of a single scattering point at the line of sight. In this situation, there is only one interaction

arc, and it is centered at the origin. The curvature of this arc can then be measured by

performing a least-squares fit to a second order polynomial and taking the coefficient of the

second order term.

Figure 6.3 shows the interaction curvature of a simulated B1737+13 as a function of

distance (from the observer) to the primary screen and distance to the secondary screen. It

reveals a clear discontinuity in the interaction curvature when the secondary screen is located

at the same distance from the observer as the primary screen. A discontinuity is expected

when the screens are in the same place, as the scattering behavior required for such a situ-

ation is non-physical. What happens on either side of this discontinuity is more interesting.

When the secondary screen is located in front1 of the primary screen, the interaction curva-

ture is lower, decreasing as the primary screen moves towards the pulsar. On the other hand,

when the secondary screen is located behind the primary screen, the interaction curvature is

higher, increasing as the secondary screen moves towards the pulsar.

It is notable that interaction curvature behaves differently depending whether the sec-

ondary screen is located in front of or behind the primary screen. This is problematic, as

it seems to indicate that whether we call a screen “primary” or “secondary” makes a phys-

ical difference on scattering. This should not be the case, as there is nothing intrinsic to a

screen that makes it “primary” or “secondary”. Thus, we need to return to our definition of

interaction curvature and see if there is a way to make it more physically meaningful.

1Throughout this and subsequent sections, “in front” means closer to the observer and “behind” means
further away from the observer.
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Figure 6.3: Interaction curvature of a simulated B1737+13 system with a primary 1-D scat-
tering screen and secondary 1-D scattering screen located at various distances from the
observer, with the base 10 logarithm of the interaction curvature shown as the color of each
pixel. Both screens have a rotation of 46 degrees on the sky in this example. The dotted
black line indicates the distance points where the primary screen and secondary screen are
located at the same distance from the observer. Interaction curvature shows two different
behaviors depending on the relative positions of the primary and secondary screens. When
the secondary screen is located in front of the primary screen, the interaction curvature is
lower, decreasing as the primary screen moves towards the pulsar. When the secondary
screen is located behind the primary screen, the interaction curvature is higher, increasing
as the secondary screen moves towards the pulsar.
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Figure 6.4: The wavefield from a situation like that in Figure 6.1, except with the order of
the screens reversed. The secondary arc is now 2.5 kpc from the observer and the primary
arc is 3.2 kpc from the observer. The interaction arcs now have a much lower curvature than
in Figure 6.2, and the secondary screen now has a higher curvature than the primary screen,
as the primary screen is now the one closer to the pulsar.

6.1.3 Revising the Definition of Interaction Curvature

Let us return to the situation of Figure 6.1, but now reverse the order of the two screens.

As shown in Figure 6.4, the interaction arcs now have a much lower curvature than in Figure

6.2. The behavior looks markedly different, when all that has changed is a reversal of the

order of the screens. Of course, the primary screen is still made up of 101 points and the

secondary screen is made up of 5 points, so the reversal has changed the situation physically.

However, we don’t expect interaction curvature to depend on how many points are in each

screen, so this does not resolve the problem.

To resolve this problem, we need to first think about how we actually make the wavefield

for scattering off of two screens. We make each point of the wavefield by choosing a point in

the primary screen and a point in the secondary screen; then, we calculate τ and fD for this

interaction and add it to the wavefield. We can choose these points in any order we like as
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Figure 6.5: Panel (a) shows the wavefield from the interaction between a screen closer to the
observer (the front screen) with three points and a screen farther from the observer (the back
screen) with five points. In Panel (b), we have plotted the wavefield in groups, with each
group corresponding to the interactions of one point in the front screen with each point in
the back screen. In Panel (c), we have plotted the wavefield in different groups, with each
group corresponding to the interactions of one point in the back screen with each point in
the front screen. Each group is given a different color, and as panels (b) and (c) show, the
points in a group can be joined by a parabola to form an interaction arc. This shows that
there are two ways to define the interaction arcs depending on how we make the wavefield.

long as we end up with all possible combinations of points from the two screens. There are,

however, two logical orders to use:

1. Choose a point from the primary screen, and for each point in the secondary screen,

calculate τ and fD and add it to the wavefield. Repeat this process for each point in

the primary screen.

2. Choose a point from the secondary screen, and for each point in the primary screen,

calculate τ and fD and add it to the wavefield. Repeat this process for each point in

the secondary screen.

In our simulations, we have used the second method, and we find that there is one interaction

arc for each point in the secondary screen. However, we could just as easily use the first

method. Figure 6.5 shows the wavefield from the interaction between a screen closer to the

observer (the front screen) with three points and a screen farther from the observer (the back
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screen) with five points. We can plot the wavefield in groups using one ordering, where each

group corresponds to the interactions of one point in the front screen with each point in the

back screen. We can also plot the wavefield in with a different ordering, where each group

corresponds to the interactions of one point in the back screen with each point in the front

screen. These two ways are shown in panels (b) and (c) respectively. As we can see, the

points in a group can be joined by a parabola to form an interaction arc. However, since there

are two different sets of groups, there are two different sets of interaction arcs depending on

which ordering we use. Panel (b) has three interaction arcs made up of five points each, while

panel (c) has five interaction arcs made up of three points each.

Our model actually gives us two equivalent ways of identifying the interaction arcs, as

there are two different ways to overlay sets of parabolas over the same wavefield. When one

screen has many more scattering points than the other, it will be much easier to identify the

interaction arcs formed by the second ordering method, as each parabola will be made up of

many more points than the parabolas formed by the first ordering method. However, there is

no inherent preference for identifying one set of interaction arcs over the other. It still makes

sense to identify the interaction arcs by the second ordering method since the primary screen

has many more points in our model, but we need to refine our definitions to make this clear:

Interaction Arc: The parabola-shaped set of points in the wavefield that are formed by the

interaction of a single point in the secondary screen with each point in the primary screen.

Interaction Curvature: The curvature of the interaction arc formed by the interaction of

a single point in the secondary screen with each point in the primary screen.

6.1.4 Characterizing Interaction Curvature Behavior

Now that we are more confident in our definition of interaction curvature, we can use it

to characterize the behavior of the interaction arcs in our model. We have already seen in

Figure 6.3 that the interaction arcs have two different behaviors depending on whether the

secondary screen is in front of or behind the primary screen. Let us now hold the primary
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screen distance fixed at a distance of 2.5 kpc—the closest possible distance to achieve the

observed primary arc curvature—and vary the secondary screen distance. We will also hold

the rotation of both screens fixed at 46 degrees relative to a line of constant declination on

the sky. This direction is parallel to the motion of the pulsar on the sky, thus minimizing the

curvature of each screen. The results are shown in Figure 6.6. Panel (a) shows the simulated

data compared to the curvature of the primary screen. As the secondary screen approaches

the observer, the interaction curvature approaches the curvature associated with the primary

screen. In the opposite direction, the interaction curvature increases as the secondary screen

approaches the primary screen before reaching a steep discontinuity, decreasing rapidly as

the secondary screen passes through the primary screen. On the other side of the primary

screen, the interaction curvature rises dramatically through several orders of magnitude as

the secondary screen approaches the pulsar.

Several model fits were attempted to describe the behavior of interaction curvature as

a function of secondary screen distance, including exponential fits, logarithmic fits and sig-

moidal fits. However, the model that best described the data is shown in panel (b) of Figure

6.6 and is as follows:

ηint(x) =


a1
x−b1 + c1 + k

(x−d1)2
x < d1

a2
x−b2 + c2 + k

(x−d1)2
x > d1

, (6.1)

where ηint is the interaction curvature, x is the distance from the observer to the secondary

screen, d1 is the distance from the observer to the primary screen, and a1, b1, c1, a2, b2, c2,

and k are the fit parameters.

This model is a combination of two 1/x fits: one for x < d1 and one for x > d1, with

a 1/(x− d1)2 term added to account for the discontinuity in the curvature at x = d1. It

appears from this that interaction curvature has an overall a/x dependence on secondary

screen distance, with a > 0 for x < d1 and a < 0 for x > d1. The piecewise nature of

the model is necessary to account for the discontinuity, and it is less concerning given the

limitations of our conception of interaction curvature.
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Figure 6.6: Interaction curvature of a simulated B1737+13 system with a primary 1-D scat-
tering screen located at 2.5 kpc with a rotation of 46 degrees on the sky and a secondary
screen with a rotation of 46 degrees at various distances indicated. Panel (a) shows the
simulated data compared to the curvature of the primary screen. Interaction curvature ap-
proaches the curvature associated with the primary screen as the secondary screen approaches
the observer and experiences a discontinuity as the secondary screen approaches the primary
screen. Curvature rises steeply for a secondary screen between the pulsar and the primary
screen. Panel (b) shows the simulated data fitted with a model of arc curvature as a function
of secondary screen distance given by Equation 6.1.

We can make this model more complete by now allowing the rotation of the secondary

screen to vary. Figure 6.7 shows the interaction curvature of a simulated B1737+13 system

with the primary screen fixed at 2.5 kpc and a rotation of 46 degrees on the sky, and a

secondary screen at various distances from the observer and with various rotations on the

sky. Interaction curvature behaves quite differently depending on the angular offset of the

secondary screen from the primary screen. While the curvature for all angular offsets follow

the same general trend, the width of the discontinuity at the primary screen decreases as

the angle of the secondary screen is more offset from the primary screen, and interaction

curvature is overall decreased for secondary screens with larger angular offsets.
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For higher angular offsets, interaction curvature no longer increases over several orders of

magnitude as the secondary screen approaches the pulsar, but rather increases much more

modestly, remaining at the same order of magnitude as the primary screen curvature through-

out.

As we have said, 2.5 kpc is the closest distance the primary screen can be to the observer

in order to have a curvature as low as the observed primary screen curvature of the B1737+13

system. However, we can place the primary screen closer to the pulsar and keep the same

curvature by increasing the rotation of the primary screen on the sky relative to the direction

of the pulsar’s motion. Figure 6.8 shows the interaction curvature of a simulated B1737+13

system with a primary screen fixed at 3.2 kpc and a rotation of 93 degrees on the sky, and

a secondary screen at various distances from the observer and with various rotations on the

sky. The trend in interaction curvature is now markedly different and more complicated

than in Figure 6.7. As the secondary screen approaches the primary screen from the observer

side, interaction curvature spikes drastically for angular offsets from 5 to 40 degrees and then

decreases sharply as the secondary screen reaches the primary screen. For other angular

offsets, interaction curvature increases more gradually as the secondary screen approaches

the primary screen, and angular offsets of 70 and 80 degrees even see a decrease in interac-

tion curvature in this region. Behind the primary screen, interaction curvature increases as

the secondary screen approaches the observer for all angular offsets, but the increase varies

greatly depending on the angular offset.

Figure 6.8 shows that interaction curvature depends not just on the rotation of each

screen relative to each other, but also on the rotation of each screen relative to the direction

of the pulsar’s motion. This makes sense, as the curvature of each individual screen depends

on the rotation of that screen relative to the direction of the pulsar’s motion.

In this section, we developed the concept of an interaction arc, and we studied how

interaction curvature changes as the parameters of a two-screen scattering model are varied.

In the next section, we will use the insights gained from this section to develop a plausible
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Figure 6.7: Interaction curvature of a simulated B1737+13 system with a primary 1-D scat-
tering screen located at 2.5 kpc with a rotation of 46 degrees on the sky and a secondary
scattering screen at various distances from the observer, and with various rotations on the
sky. The angular offsets indicated by the legend are the rotations of the respective secondary
screen relative to the 46 degree rotation of the primary screen. The dotted black line indi-
cates the curvature of the primary screen, with interaction curvatures for all angular offsets
approaching the curvature of the primary screen as the secondary screen approaches the ob-
server. The width of the discontinuity at the primary screen decreases as the angle of the
secondary screen is more offset from the primary screen, and interaction curvature is overall
decreased for secondary screens with larger angular offsets.

83



Figure 6.8: Interaction curvature of a simulated B1737+13 system with a primary 1-D scat-
tering screen located at 3.2 kpc with a rotation of 93 degrees on the sky and a secondary
scattering screen at various distances from the observer, and with various rotations on the
sky. The angular offsets indicated by the legend are the rotations of the respective secondary
screen relative to the 93 degree rotation of the primary screen. The dotted black line indi-
cates the curvature of the primary screen, with interaction curvatures for all angular offsets
approaching the curvature of the primary screen as the secondary screen approaches the
observer. We see much different behavior at the discontinuity than in Figure 6.7. As the
secondary screen approaches the primary screen from the observer side, interaction curvature
spikes drastically for angular offsets from 5 to 40 degrees and then decreases sharply as the
secondary screen reaches the primary screen. Other angular offsets increase more gradually
as the secondary screen approaches the primary screen, and angular offsets of 70 and 80 de-
grees even see a decrease in interaction curvature in this region. Behind the primary screen,
interaction curvature increases for all angular offsets, though the increase is much greater for
some angular offsets, and there is no clear pattering to this ordering.
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model of scattering for the B1737+13 system.

6.2 Modeling

Recall the two key features of the scattering event that we noted (5.2.2): that the sec-

ondary spectrum becomes “fuzzy,” and that we measure higher arc curvatures than the

primary screen curvature. The idea of interaction arcs can help us explain both of these

features.

The higher curvatures seen in the dataset had values of around η = 0.06 s3. We will pro-

ceed under the hypothesis that the interaction curvature is around this value. The increase

up to this value and decrease after this value, under this hypothesis, is due to the curvature

search algorithm trying to fit both the primary screen curvature and the interaction curva-

ture overlaid on top of each other, with curvature values closer to the primary screen when it

is the dominant factor in scattering, and curvature values closer to the interaction curvature

when the interaction is the dominant factor in scattering.

As a starting point for the model, we can refer back to Figure 6.8. With a primary

screen at 3.2 kpc and a rotation of 93 degrees on the sky and a secondary screen at 2.5

kpc, interaction curvature is around 0.06 s3 for a variety of angular offsets. Our model for

simulations has the secondary screen at 2.5 kpc and aligned with the direction of the pulsar’s

motion at 46 degrees on the sky. We used 101 scattering points for the primary screen and

20 scattering points for the secondary screen. These model parameters are listed in Table

6.1. For the brightness distributions, we used a Gaussian exp(−θ2/2σ2) distribution, and,

for the secondary screen, we used a uniform distribution for simplicity.

We performed three tests of this model in an attempt to recreate three situations in our

dataset. In the first, the primary arc is well resolved with inverted arclet substructure, as

in the early part of the dataset. In the second and third, the scattering event has made
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Parameter Primary Screen Value Secondary Screen Value
Distance (kpc) 3.2 2.5

Rotation (degrees) 93 46
Scattering Points 101 20

Point Density (points/AU) 0.045 0.1

Table 6.1: Parameters of the two-screen scattering model used to model the B1737+13
system.

Model
Primary Screen
Magnification

Interaction
Magnification

Primary Screen
Brightness
Function
2σ2 (mas2)

Secondary
Screen
Offset from LOS
(AU)

One-Screen
Scattering

1.0 0.0 0.05 0.0

Symmetric
Two-Screen
Scattering

0.5 1.0 0.01 0.0

Asymmetric
Two-Screen
Scattering

0.5 1.0 0.01 0.5

Table 6.2: Relevant parameters of the three different scattering models shown in Figures 6.9,
6.10, and 6.11, respectively.

the primary arc fuzzy, with the second situation representing a fuzzy arc that is roughly

symmetric and the third representing a fuzzy arc that is asymmetric. Relevant parameters

for the three models are listed in Table 6.2, and the results of these simulations are shown

along with similar dynamic and secondary spectra from the dataset in Figures 6.9, 6.10, and

6.11, respectively.

For the first situation, we used a one-screen scattering model with the primary screen

only. This produced a model secondary spectrum with a well defined primary arc with in-

verted arclet substructure. This mimics the basic structure of the secondary spectrum from

the early part of the dataset, with a comparison shown to MJD 53830 in Figure 6.9. How-

ever, the model dynamic spectrum has much larger regions of power than the data, and the

secondary spectrum contains additional substructure that is not present in the model. It is
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possible, then, that the one-screen scattering model cannot fully explain the early part of the

dataset.

For the second situation, we used a two-screen scattering model with the secondary screen

centered on the line of sight. The magnification of the wavefield from the primary arc only

was reduced by 50% to account for the fact that the presence of the secondary screen would

reduce the amount of light reaching the observer that has only been scattered by the primary

screen. The variance of the brightness distribution for the primary screen also decreased by

a factor of 5, increasing the magnification of the core relative to the wings to reduce the in-

tensity of inverted arclets. This produced a model secondary spectrum that is much fuzzier,

particularly around the origin. The fuzziness is also symmetric in this case. These feature

mimic some of the secondary spectra during the scattering event, with MJD 53978 shown in

Figure 6.10 for comparison. The size of the scintles in the model dynamic spectrum is also

similar to the data. The fuzziness in the secondary spectrum extends further out from the

origin than in the model, but the overall comparison is quite promising.

For the third situation, we used a two-screen scattering model with the secondary screen

offset from the line of sight by 0.5 AU. All other model parameters were the same as in the

second situation. This produced a model secondary spectrum that is fuzzy, but is asymmetric

with power mainly in quadrants 1 and 3. This is shown in Figure 6.11 along with data from

MJD 54004. Again, the fuzziness in the secondary spectrum extends further out from the

origin than in the model, but the overall comparison is also promising.

Because we have selected parameters that produce a desired interaction curvature, we

can be confident that our model accurately reproduces the observed higher curvature during

the scattering event. As for the fuzziness, the model secondary spectra have been able to

capture some of the fuzziness seen during the scattering event. There is certainly room for

the model to improve in this regard, but the model is able to capture some essential features

of the data.
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Figure 6.9: Dynamic and secondary spectra from the 1175 MHz observation of B1737+13 at
MJD 53830 compared with model dynamic and secondary spectra produced with Screens.
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Figure 6.10: Dynamic and secondary spectra from the 1175 MHz observation of B1737+13
at MJD 53978 compared with model dynamic and secondary spectra produced with Screens.
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Figure 6.11: Dynamic and secondary spectra from the 1175 MHz observation of B1737+13
at MJD 54004 compared with model dynamic and secondary spectra produced with Screens.
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Figure 6.12: Wavefield from the two-screen scattering model that is shown in Figure 6.10.
The interaction arcs sit on top of the primary arc such that the primary arc is washed out,
giving a fuzzy appearance.

To see where the fuzziness comes from in the model, we can look at the wavefield. This

is shown in Figure 6.12 to represent the second situation, where the secondary screen is cen-

tered on the line of sight. The interaction arcs are overlaid on top of the primary arc such

that the primary arc is competing with the interaction arcs for visibility. This has the effect

of washing out the primary arc, wish gives the fuzzy appearance.
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Chapter 7

Conclusion

7.1 Summary of Results

This thesis has presented a model for the variable scintillation of pulsar B1737+13 that

uses two-screen scattering. To arrive at this model, we first measured the arc curvature during

the 36-epoch observation. This revealed the presence of a primary arc, but it also showed a

scattering event which was associated with higher measured curvatures and fuzziness in the

secondary spectrum. A single screen model is not sufficient to explain this. We developed

the idea of interaction arcs, which arise in the wavefield from scattering off of both a primary

and a secondary screen. Once we refined our definition of interaction arcs, we were then able

to show how they behave with various screen parameters and use that knowledge to find a

plausible set of parameters for a two-screen model. We then showed that this model is also

able to explain fuzziness in the secondary spectrum.

The model we have developed shows great promise in demonstrating the qualitative and

quantitative effects of a secondary screen on scintillation arc behavior. On the basis of the

curvature measurements and the model presented, it is highly likely that more than one

screen is responsible for the observed scintillation. The model we have developed shows that

two screens are able to explain many features of the data.
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7.2 Future Work

The model we have developed is an excellent starting point. However, there is much room

for improvement. Some of this could potentially come from adjusting model parameters: the

extent of each screen, the distances, the rotations, and the brightness distributions. For

example, we used a uniform brightness distribution for the secondary screen, but we could

also try a Gaussian distribution. We could also try other distributions for either screen.

Further study is also needed in understanding the interaction arcs. We have already shown

that our understanding of them is subject to the pattern-seeking nature of the human brain.

While we were able to refine our definition of interaction arcs, it is still possible that we have

not found the best formulation of what we observe in the wavefields of simulated two-screen

scattering. We also have no method currently for determining interaction curvature a priori

based on the screen parameters, nor do we know if such a method even exists.

In terms of the dataset itself, there is a lot of richness that is still unexplored. While

we have been able to probe deeply into the data using theta-theta mapping and curvature

search algorithms, we have yet to try other methods of curvature analysis. We have yet

to try phase retrieval, another technique developed by Baker et al. (2022). We could also

investigate underlying brightness distribution using techniques developed by Stinebring et al.

(2019).
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